Корнюхин И.П., Жмакин Л.И., Козырев И.В., Страхова Н. А. Московский государственный текстильный университет им. А.Н. Косыгина (МГТУ), Малая Калужская 1, Москва 119991, Россия, IP_Korn@ramler.ru

МЕТОД РАСЧЕТА ВРАЩАЮЩЕГОСЯ РЕГЕНЕРАТИВНОГО ТЕПЛООБМЕННИКА АННОТАЦИЯ

Метод расчета компактного вращающегося регенеративного теплообменника по Кейсу-Лондону включает эмпирическую поправку на скорость вращения. В предлагаемом сообщении разработан замкнутый аналитический метод расчета таких теплообменников, не содержащий эмпирических поправок. Влияние частоты вращения учитывается дополнительным динамическим сопротивлением в коэффициенте теплопередачи. Динамическое сопротивление зависит от коэффициентов теплоотдачи и времен пребывания потоков в каждом из каналов – холодном и горячем. С ростом частоты вращения динамическое сопротивление стремится к нулю.

ВВЕДЕНИЕ

Хорошо известно использование вращающихся регенераторов типа Юнгстрема в качестве воздухоподогревателей в котельных установках. В настоящее время развивается подход к использованию вращающихся регенераторов в системах вентиляции для нагрева поступающего воздуха за счет теплоты сбрасываемого, а также для регенерации тепла в газотурбинных энергетических установках. В качестве насадки в таких регенераторах используется гофрированная алюминиевая лента с подложкой из такой же, но недеформированной ленты, образуя таким образом каналы для прохода воздуха. Такая сдвоенная лента навивается на вал в форме спирали Архимеда. Толщина лент мала — порядка десятков микрометров. Добавим также, что такие установки представляются перспективными в системах вентиляции текстильных предприятий для регенерации теплоты воздуха, сбрасываемого из установок для термообработки тканей.

Кейсом и Лондоном [1] предложен метод расчета таких регенераторов, в которых скорость вращения барабана учитывается при помощи эмпирической поправки, зависящей от теплоемкостей теплоносителей и насадки. Хотя на первый взгляд такая форма поправки представляется довольно логичной, тем не менее, она не учитывает

влияния интенсивности теплоотдачи. Кроме того, в качестве гипотезы в [1] используется представление коэффициента теплопередачи как средневзвешенного по площадям поверхности теплообмена холодного и горячего каналов. В данной работе предлагается метод расчета, свободный от таких предположений.

МЕТОД РАСЧЕТА РЕГЕНЕРАТОРА

В отличие от регенераторов с неподвижной насадкой, где температура теплоносителей на выходе из насадки изменяется во времени, во вращающихся регенераторах, работающих в стационарном режиме, их температура остается неизменной. В этом они схожи с рекуперативными теплообменниками. Более того, в тех же рекомендациях [1] по расчету вращающихся регенераторов для них сохраняются те же, что и рекуператоров, определения среднего температурного напора и эффективности теплообменника. Средние (среднеинтегральные) температуры каждого из теплоносителей $t_{\pi 1}$ и $t_{\pi 2}$ рассчитывается по среднему температурному напору теплоносителей, их температурам на входе и выходе и не зависят от температур стенок (см. [2]), и, следовательно, они также будут неизменны во времени. Более того, среднелогарифмический напор совпадает [2] с разностью среднеинтегральных температур $t_{\pi 1}$ — $t_{\pi 2}$ = $\Delta t_{\pi 2}$. Но температура стенки (температура насадки) будет изменяться во времени.

Насадка регенератора выполняется из тонкой металлической фольги, и для нее число Био мало по сравнению с 1

$$Bi = \alpha \delta / \lambda \ll 1$$

При малых значениях числа Био температурное поле фольги практически однородно по толщине, и ее прогрев (охлаждение) определяется лишь закономерностями теплоотдачи. При этом изменение энергии насадки определяется величиной потока теплоты через ее поверхность, что позволяет записать для каждой из частей (каналов) регенератора уравнение теплового баланса в виде

$$c\rho V \frac{dt_i}{d\tau} = \alpha_i (t_{xi} - t_i) F, \qquad i = 1, 2, \tag{1}$$

где c и ρ – удельная теплоемкость и плотность насадки;

V и F – объем и площадь поверхности насадки;

 t_1 и t_2 – температура стенки на стадиях прогрева и охлаждения соответственно.

Обозначим

$$z_1 = 2\alpha_1 \tau/c\rho\delta$$
, $z_2 = 2\alpha_2 \tau/c\rho\delta$, (2)

$$Z_1 = 2\alpha_1 \tau_1 / c\rho \delta, \qquad Z_2 = 2\alpha_2 \tau_2 / c\rho \delta$$
 (3)

Учитывая определения (2), (3) и то, что $V/F = \delta/2$, преобразуем уравнения (1) к виду

$$dt_1/dz_1 = t_{\text{kl}} - t_1, \qquad 0 \le z_1 \le Z_1;$$
 (4)

$$dt_2/dz_2 = t_2 - t_{:x2}, \qquad 0 \le z_2 \le Z_2;$$
 (5)

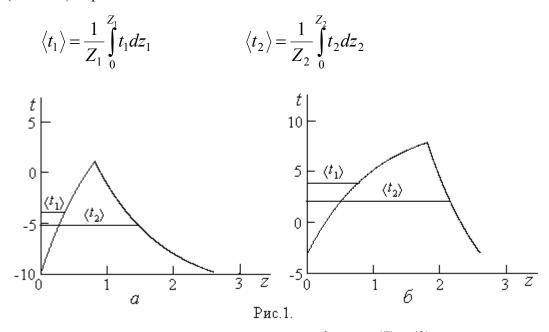
После осреднения по продольной координате эти уравнения не изменят своей формы, и в дальнейшем все значения температур в этих уравнениях рассматриваются как среднеинтегральные по длине теплообменника.

Общие решения уравнений (4) и (5) имеют вид

$$t_{\text{w1}} - t_1 = c_1 \exp(-z_1), \qquad t_2 - t_{\text{w2}} = c_2 \exp(-z_2).$$
 (6)

Температура стенки в регенераторе является непрерывной периодической функцией. В силу этого температура стенки на выходе из зоны нагрева должна быть равна температуре на входе в зону охлаждения, а ее значение на выходе из зоны охлаждения должно совпадать с соответствующим значением на входе в зону нагрева, т.е.

$$t_1|_{z1=Z1} = t_2|_{z2=0}$$
 $t_1|_{z1=0} = t_2|_{z2=Z2}$


С помощью этих условий определяются значения констант в уравнениях (6), что позволяет представить температурные поля в обеих зонах в виде

$$t_{x_1} - t_1 = (t_{x_1} - t_{x_2}) \frac{1 - \exp(-Z_1)}{1 - \exp[-(Z_1 + Z_2)]} \exp(-z_1)$$
 (7)

$$t_2 - t_{x2} = (t_{x1} - t_{x2}) \frac{1 - \exp(-Z_2)}{1 - \exp[-(Z_1 + Z_2)]} \exp(-z_2)$$
 (8)

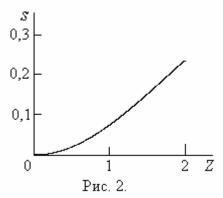
В качестве примера на рис. 1 представлено изменение температуры стенки регенератора рассчитанное по уравнениям (7) и (8) при $Z_1 = 0.8$ и $Z_2 = 1.8$ (рис. 1а) и при $Z_1 = 1.8$ и $Z_2 = 0.8$ (рис. 1б). Оба графика построены при средних температурах горячего и холодного теплоносителей равных соответственно $t_{ж1} = 10C$ и $t_{ж2} = -12C$. Заметим, что в рассматриваемом случае поля температур в обеих зонах (зонах нагрева и охлаждения) нелинейны.

Средние (среднеинтегральные) по времени значения температур стенок в каждой из зон (каналов) определяются как

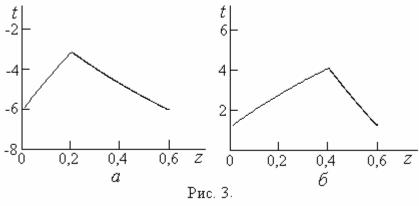
Выполнив операции интегрирования с использованием формул (7) и (8), получим

$$t_{\text{x}1} - \langle t_1 \rangle = (t_{\text{x}1} - t_{\text{x}2}) \frac{(1 - \exp(-Z_1))(1 - \exp(-Z_2))}{Z_1(1 - \exp[-(Z_1 + Z_2)])}, \tag{9}$$

$$\langle t_2 \rangle - t_{\text{m2}} = (t_{\text{m1}} - t_{\text{m2}}) \frac{(1 - \exp(-Z_1))(1 - \exp(-Z_2))}{Z_2(1 - \exp[-(Z_1 + Z_2)])}.$$
 (10)


На основании этих формул можно представить разность температур стенки в обеих зонах в виде

$$\langle t_1 \rangle - \langle t_2 \rangle = (t_{\text{w}1} - t_{\text{w}2})s, \tag{11}$$


где параметр s определяется соотношением

$$s = 1 - \frac{(1 - \exp(-Z_1))(1 - \exp(-Z_2))}{(1 - \exp[-(Z_1 + Z_2)])} \left(\frac{1}{Z_1} + \frac{1}{Z_2}\right)$$
(12)

Зависимость s(Z), построенная по уравнению (12) для случая $Z_1 = Z_2 = Z$ представлена на рис. 2. При высокой частоте вращения барабана и при низком коэффициенте теплоотдачи значения параметров Z_i малы, как следует из уравнения (3). В пределе, при $Z_i \rightarrow 0$, величина $s \rightarrow 0$ и различие в значениях температур стенки на стадиях нагрева и ох-

лаждения исчезает. Это обстоятельство иллюстрируется также графиками рис. 3, построенными при относительно малых значениях Z_i . Эти графики построены при тех же средних температурах теплоносителей, что и графики рис. 1. График рис. 3а построен при $Z_1 = 0.2$ и $Z_2 = 0.4$, а график рис. 3б — при $Z_1 = 0.4$ и $Z_2 = 0.2$.

Температурные кривые на этих графиках практически линейны, так что средние температуры стенки в зонах нагрева и охлаждения совпадают.

Воспользуемся

законами теплоотдачи Ньютона-Рихмана в обеих зонах

$$Q = \alpha_1 (t_{\kappa 1} - \langle t_1 \rangle) F_1 \qquad Q = \alpha_2 (\langle t_2 \rangle - t_{\kappa 2}) F_2 \tag{13}$$

Исключая значения температур стенок из уравнений (13) при помощи уравнения (11), получим

$$Q = \frac{t_{xc1} - t_{xc2}}{\frac{1}{\alpha_1 F_1} + \frac{1}{\alpha_2 F_2} + \left(\frac{1}{\alpha_1 F_1} + \frac{1}{\alpha_2 F_2}\right) \frac{s}{1 - s}} F$$
 (14)

Стоящая в числителе формулы (4) разность среднеинтегральных температур, как уже отмечалось выше, совпадает со среднеинтегральным (среднелогарифмическим) температурным напором [2]. В целом уравнение (14) совпадет с известным уравнением теплопередачи рекуператора, если величину обратную знаменателю в этом уравнении отождествить с коэффициентом теплопередачи k

$$k = \frac{1}{\frac{F}{\alpha_1 F_1} + \frac{F}{\alpha_2 F_2} + \left(\frac{F}{\alpha_1 F_1} + \frac{F}{\alpha_2 F_2}\right) \frac{s}{1 - s}} = \frac{1}{\left(\frac{F}{\alpha_1 F_1} + \frac{F}{\alpha_2 F_2}\right) \frac{1}{1 - s}}$$
(15)

Величину

$$(F/\alpha_1F_1 + F/\alpha_2F_2)s/(1-s)$$

в знаменателе уравнений (14) и (15) можно рассматривать как динамическое сопротивление стенки регенератора, зависящее от частоты вращения барабана. С ростом частоты вращения регенератора эта величина уменьшается и может стать пренебрежимо малой при больших частотах. В практических расчетах можно считать, что динамическим сопротивлением можно пренебречь при $Z_i < 0.3$. Таким образом, как и в эмпирической поправке [1] с ростом частоты вращения регенератора ее влияние вырождается, но в отличие от рекомендаций [1] влияние теплоемкости теплоносителей не проявляется.

Представленные уравнения могут быть использованы при проведении как конструктивного, так и поверочного расчетов регенератора. Уравнение теплового баланса регенератора имеет тот же вид, что и для рекуператора.

При проведении поверочного расчета после определения величины коэффициента теплопередачи по формуле (15) рассчитывается величина $N_6 = kF/(Gc)_{\rm M}$ [1, 2], а затем по одному из уравнений для прямо- или противотока [2] величина эффективности E. Используя определение эффективности теплообменика [1, 2] рассчитывают поток теплоты Q, а по уравнению теплового баланса находят значения температур теплоносителя на выходе из теплообменника.

ВЫВОДЫ

Итак, предложен метод расчета вращающегося регенератора, не требующий введения эмпирических поправок на скорость вращения. Теплообменник может быть использован при регенерации тепла уходящего воздуха в системах вентиляции и в термостабилизационных машинах, а также для регенерации тепла в газотурбинных энергетических установках.

ЛИТЕРАТУРА

- 1. Кейс В.М., Лондон А.А. Компактные теплообменники. М.-Л.: Госэнергоиздат, 1962.
- 2. Корнюхин И.П. Тепломассообмен в теплотехнике текстильных производств. –М.: МГТУ им. Косыгина, 2004.