


which are usually ignored in studying the evolution of small perturbations. The first factor is a localized

energy contribution, which ensures the existence of a nonequilibrium region responsible for origination

of gradients of thermodynamic parameters in the flow. The second factor is downstream entrainment of

growing perturbations to the heated equilibrium region. The latter does not refer to acoustic perturba-

tions. Acoustic waves can be reflected in a medium with gradients; in this case, the inhomogeneous zone

itself can act as a resonator where the perturbations are amplified.

The objective of the present work is to study the evolution of small hydrodynamic perturbations

in a nonequilibrium region through which an initially equilibrium gas passes and to determine the range

of perturbation frequencies in which the nonequilibrium region starts operating as a resonator.

Formulation of the Problem. Regions of nonequilibrium states in terms of vibrational degrees

of freedom are generated in a one-dimensional nonequilibrium gas flow by means of energy input. Two

methods of energy pumping are considered:

local input if the pumping region is much narrower than the relaxation zone. In this case, the

pumping region can be considered as a surface on which the vibrational temperature changes in a jumplike

manner;

extended input if the pumping region has a finite width. The energy introduced into the flow

is defined as a function Ipump = I0 exp (−(x − x0)
2/d), where the parameter d was chosen to be equal

approximately to one third of the relaxation-zone length.

Such a formulation of the problem corresponds to real conditions and allows one to estimate the

effect of the pumping-region length. It is well known that part of the energy during pumping is spent

on direct heating of the gas (bypassing vibrational degrees of freedom). It is possible to include this

mechanism within the framework of approximations considered by introducing a source term into the

energy equation for translational degrees of freedom. Nevertheless, the real kinetic scheme of such heating
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is rather complicated, and such a consideration is inexpedient within the framework of a simple kinetic

model used.

Energy pumping leads to separation of vibrational and translational temperatures, though later

these temperatures start leveling out owing to VT relaxation.

We consider interaction of small hydrodynamic perturbations (acoustic, thermal, and vortex ones)

and calculate the transmission and reflection coefficients for all types of perturbations being generated.

General Algorithm of Problem Solution. The initial system of hydrodynamic equations with

allowance for energy release and relaxation has the form

dρ

dt
+ ρ div v = 0,

ρ
dv

dt
= − grad p,

γ

γ − 1

dT

dt
− T

ρ

dρ

dt
=

m

kB

ε− εeq

τ
,

(1)

dε

dt
= −ε− εeq

τ
+ Ipump ,

where p, ρ, T , and v are the pressure, density, translational temperature, and velocity of the gas, re-

spectively, γ is the ratio of specific heats, m is the mass of the molecule, Ipump is the power of energy

pumping, kB is the Boltzmann constant, τ is the relaxation time, h is the Planck constant, ω is the

frequency, ε(TV ) = (hω/m)/(exp (hω/(kBTV ))− 1) is the current vibrational energy of the gas, TV is the

vibrational temperature, and εeq(T ) is the equilibrium vibrational temperature.

The kinetic scheme used is as simple as possible and includes only vibrational relaxation within

the framework of a simple relaxation equation [1] and pumping into vibrational degrees of freedom.

The reason for these simplifications is the fact that, from the viewpoint of hydrodynamic perturbations,

the main role belongs to energy-consuming processes with energy release into translational degrees of

freedom, because it is this type of energy release that changes the hydrodynamic parameters. At the
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same time, such a simple formulation makes it possible to identify the basic mechanisms of amplification

of perturbations and the instability region, which can be further refined as the model used becomes more

complicated.

The solution of system (1) in a steady one-dimensional case yields the profiles of unperturbed

parameters.

Interaction of small hydrodynamic perturbations with the nonequilibrium region is described by

the solution of a linearized system for perturbations of the form a′(x, y) = a′0(x) exp (iωt + ikyy) (for the

one-dimensional case, ky = 0):

iωρ′0 + ρ′0
∂v

∂x
+ v

∂ρ′0
∂x

+ v′0x

∂ρ

∂x
+ ρ

∂v′0x

∂x
+ ikyρv′0y = 0,

iωρv′0x + ρv
∂v′0x

∂x
+ (ρv′0x + ρ′0v)

∂v

∂x
+ ρ

∂T ′
0

∂x
+ T

∂ρ′0
∂x

+ T ′
0

∂ρ

∂x
+ ρ′0

∂T

∂x
= 0,

iωρv′0y + ρv
∂v′0y

∂x
+ ikyρT ′

0 + ikyρ
′
0T = 0, (2)

γ

γ − 1

(
iωT ′

0 + v′0x

∂T

∂x
+ v

∂T ′
0

∂x

)
−

(T ′
0

ρ
+

Tρ′0
ρ2

)
v

∂ρ

∂x
− T

ρ

(
iωρ′0 + v

∂ρ′0
∂x

+ v′0x

∂ρ

∂x

)
=

=
ε′0
τ
− ε− εeq

τ 2

dτ

dT
T ′

0 −
ε′eq0
τ

,

iωε′0 + v
∂ε′0
∂x

+ v′0x

∂ε

∂x
= −ε′0

τ
+

ε− εeq

τ 2

dτ

dT
T ′

0 +
ε′eq0
τ

,

System (2) is a system of linear equations. This means that the solution can be expanded in a

certain set of functions. This statement is valid both in the nonequilibrium region and in the equilibrium

regions (cold equilibrium region ahead of the relaxation zone and heated equilibrium region formed when

the relaxation is completed). In equilibrium regions, however, system (2) becomes linear and has constant

coefficients; the set of eigenfunctions (modes) in this case is well known [2]: two acoustic, thermal, vortex,

and relaxation modes. We consider perturbations that can be generated by the relaxation zone. They are

acoustic, vortex, thermal, and relaxation modes in the heated gas; in the cold gas, it is only an acoustic

wave propagating upstream (we consider a subsonic flow only).
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Fig. 1. Transmission coefficient Ktr (a) and reflection coefficient Kref (b) versus

the dimensionless frequency ωL/CS in the case of local pumping of energy for v =

100 m/sec: TV = 500 K (I), TV = 1000 K (II), TV = 2000 K (III), and TV = 2500 K

(IV); the dashed curves show the results calculated with ignored pumping of energy

into translational degrees of freedom.

Division into modes persists in the relaxation zone as well, but the structure of modes is more

complicated here.

The following algorithm is used. Relations for each mode propagating in the flow are used as the

initial conditions in the equilibrium heated region. Integrating each model separately over the nonequi-

librium region from right to left and matching with free-stream modes on the relaxation-zone front, we

obtain a matrix consisting of perturbation amplitudes with dimension 4× 4 for the one-dimensional case

and 5× 5 for the two-dimensional case.

If we define an acoustic, thermal, or vortex wave incident onto the nonequilibrium region, we can

calculate the transmission and reflection coefficients corresponding to each mode, i.e., obtain the charac-

teristics of the nonequilibrium zone as a resonator. Instability will arise in the case of an infinitely large

transmission coefficient, i.e., in a situation when the nonequilibrium region itself generates perturbations.

One-Dimensional Interaction in the Flow. Interaction of the incident acoustic wave with the
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Fig. 2. Transmission coefficient Ktr versus the dimensionless frequency ωL/CS in the case

of extended pumping of energy for v = 100 m/sec: TV = 1500 K (I), TV = 1602 K (II), and

TV = 1900 K (III); the dashed curves show the results calculated with ignored pumping

of energy into translational degrees of freedom.

Fig. 3. Boundaries of resonant interaction (above the critical curves Ktr > 3): curves 1

and 1′ refer to the one-dimensional case, and curves 2 and 2′ refer to the two-dimensional

case; curves 1 and 2 refer to the local input of energy, and curves 1′ and 2′ refer to the

extended input of energy.
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Fig. 4. Transmission coefficient Ktr versus the dimensionless frequency ωL/CS and

wave vector kyL in the case of the local input of energy for v = 100 m/sec and

TV = 2350 K.
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nonequilibrium region is described by transmission and reflection coefficients of the acoustic wave, which

are determined by the ratio of amplitudes of generated perturbations to the amplitude of the incident

wave. The interaction process includes two mechanisms. The first one is related to reflection of the

incident acoustic wave from the region with gradients of hydrodynamic parameters; the second mechanism

involves the transition of energy from internal degrees of freedom to translational ones.Figure 1 shows the

calculated transmission and reflection coefficients. The calculations were performed for oxygen with the

relaxation time pτ = 1.14 · 10−10 exp (19.57(T/T0)
−1/3) atm · sec [1]. If the vibrational temperature TV

is not very high, the transmission coefficient (Ktr) is approximately equal to unity and the reflection

coefficient (Kref ) is rather small, i.e., the incident acoustic wave passes through the nonequilibrium

region almost without any changes. With increasing TV , the gradients of hydrodynamic parameters

increase, and the incident acoustic wave is reflected to a greater extent; therefore, Ktr decreases and Kref

increases. Beginning from a certain value of TV , however, a drastic increase in transmission and reflection

coefficients occurs at certain frequencies. If we eliminate energy pumping from internal to translational

degrees of freedom in equations for perturbations, the drastic increase in the coefficients Ktr and Kref is

not observed (dashed curves in Fig. 1). Thus, feeding of perturbations owing to the energy of internal

degrees of freedom plays the main role in formation of anomalies in the behavior of Ktr and Kref .

A similar consideration was performed for the case of extended pumping (Fig. 2). A comparison of

Figs. 1a and 2 reveals the effect of the pumping zone length: the number of resonances is different, but

the resonance is present in both models.

For each method of energy pumping and for a given flow velocity, there is a vibrational tempera-

ture TV above which the growth rate coefficient will exceed a certain value at certain frequencies. Thus,

it is possible to plot the dependence TV (v). In Fig. 3, Ktr > 3 lies higher than curves 1 and 1′. Substan-

tial pumping of energy from the nonequilibrium region to hydrodynamic perturbations occurs in these
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regions.

Two-Dimensional Interaction with the Nonequilibrium Region. To consider interactions

with vortex perturbations and in the case of oblique incidence of acoustic waves, one has to solve a

two-dimensional problem.

The solution is completely similar to the one-dimensional case. In the two-dimensional case, we

have one more equation of motion for the velocity component v′y, and an arbitrary perturbation is written

in the form a′(x, y) = a′0(x) exp (iωt+ ikyy). Figure 4 shows the transmission coefficient Ktr as a function

of the dimensionless parameters ωL/CS and kyL for fixed values of TV and v, where L = v0τ0, i.e., Ktr is

determined by the gas parameters at the beginning of the relaxation region. It is seen that the growth-

rate coefficients in the resonant zone are significantly higher in the two-dimensional problem, which is

related to an increase in the path in an amplifying medium for oblique perturbations. The calculations

were performed for the case with a reflected acoustic wave. As in the one-dimensional case, the boundary

of resonant interaction can be found (see Fig. 3). In the two-dimensional case, the boundary is lower

than that in the one-dimensional case, i.e., the region of resonant interaction becomes larger.

Effect of Resonator Walls on the Properties of the Gas-Flow System. A real system

contains walls and mirrors deflecting the flow. Vortex and thermal perturbations are entrained together

with the flow, whereas acoustic perturbations are reflected from the walls. The simplest estimates show

that such obstacles substantially increase the transmission and reflection coefficients.

Interaction of Vortex Perturbations with the Relaxation Zone. This problem is of interest

because of attempts to improve heat removal in the system by means of flow turbulization.

Additional turbulization of a gas-dynamic gas flow is assumed to improve stability of the discharge.

Enhancing mixing in the working region, it should reduce the arising inhomogeneities in hydrodynamic

parameters, which yields a more stable discharge.
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Fig. 5. Efficiency of generation of the thermal mode versus the dimensionless fre-

quency ωL/CS and wave vector kyL in the case of the local pumping of energy for

v = 50 m/sec and TV = 2000 K.

It was shown in [3–6], however, that stability decreases with increasing turbulence intensity. Within

the framework of the problem considered, this phenomenon can be attributed to generation of heat waves.

Turbulization of the flow within the framework of the problem solved is equivalent to origination

of a vortex mode incident onto the perturbation front. The technique used in the present work makes it

possible to demonstrate that the vortex mode incident onto the nonequilibrium region leads to generation

of the entire range of hydrodynamic modes, including the thermal mode, which exerts the greatest effect

on discharge destabilization.

Figure 5 shows the ratio of the amplitude of the generated thermal mode to the amplitude of the

incident vortex mode as a function of ωL/CS and kyL. There is a range of values of ωL/CS and kyL in

which the efficiency of generation of the thermal mode is much lower than for other wavenumbers. Thus,

it is possible to choose a turbulization mode providing the minimum generation of thermal perturbations.

Generation of heat waves may be responsible for the nonmonotonic dependence of the limiting

input power on the degree of nonequilibrium and pumping velocity, which was observed in experiments

with turbulization. The amplitude of the heat waves is determined by parameters of vortex perturbations
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and can be minimized, which would favor discharge stabilization.

Conclusions. The problem of interaction of small hydrodynamic perturbations with a nonequi-

librium region of a gas flow with different methods of energy pumping is solved.

In the case of one-dimensional interaction, there exists a range of resonant parameters determined

by the pumping velocity, degree of nonequilibrium, and perturbation frequency for which the transmis-

sion and reflection coefficients are anomalously high. It is shown that additional obstacles substantially

increase the values of the resonant coefficients.

The problem of two-dimensional interaction of perturbations with a nonequilibrium gas region is

solved. It is found that the resonant transmission and reflection coefficients are higher than those in the

one-dimensional case.

It is also shown that interaction of vortex perturbations with the nonequilibrium region generates

heat waves whose amplitude is determined by flow parameters.
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